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Abstract

An overview of some of the recent major developments in the theory and
applications of pseudospectral method is provided. The article is divided
into two parts - theory and application to Fluid Dynamics. The part on theory
summarizes the results pertaining to the basic principles of pseudospectral
methods, their implementation and the relevant error estimates. The part on
applications is divided into two sections - incompressible and compressible
flows. The section on incompressible flows is confined to the simulation of
stability transition and turbulence by spectral methods. The _compressible
flows section presents a fairly up—tb-date review of spectral methods as
applied to Potential and Euler equations. The last ~subsection discusses

_briefly a spectral algorithm for compressible Navier-Stokes equatiomns.
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INTRODUCTION

The 1977 monograph by Gottlieb and Orszag reviewed the state of the art,
at that time, of spectral methods. The theory presented in that work centered
on the Galerkin and tau methods and the fluid dynamical applications were
confined to incompressible flows. In the past several years, there has been
extensive activity both in the theory and application of spectral methods.
This activity has been mainly concentrated in the area of pseudospectral
methods. For the theory, functional analysis has proved to be a powerful tool
for obtaining useful error estimates. For spectral techniques, improved
iteration methods have been developed that make possible large-scale
calculations of complicated physical phenomena. For applications, first
results. for compressible flow problems have been obtained for rather
complicated flow fields including shock waves and significant progress has
been made on transition and turbulence in incompressible flows.

The aim of this arficle is to review some of the major developments that
were made since 1977. We concentrate on pseudospectral techniques as the
analysis of Galerkin and tau methods is adequately covered in our 1977
monograph. The review 1is dividea into twé main parts. First, we ‘give a
summary of results that explain the nature ofA pseudospectral methods, the
correct way to implement them, and the error behavior that should be expected
to be prodﬁced by them.. It should be noted that séme very important results
in the theory of spectral methods are omitte&; Our guidéline has been to
Quote those results that are used in the applications discussed in the second
part.

The part on applications contains two major subéections; namely
incompressible and compressible flows. Our review is by no means exhaustive:

some major applications are not discussed at all., For example there is a



large and rapidly growing literature on the applications of spectfal methods
in meteorology (see, e.g., Haltiner and Williams 1980). Our goal here is to
introduce the potential user to the range of applications of spectral methods
and to the problems encountered in implementing them. Spectral methods
provide a very sophisticated tool for scientific computing; as in the case of
other sophisticated techniques, they can be dangerous if misused. A properly
constructed spectral method can be used to obtain solutions where other
numerical techniques fail. However, a poorly designed spectral method may
perform much worse than simpler finite difference or finite element
techniques. We hope that this review will serve as a useful guide to the

proper implementation of spectral methods.

1. PSEUDOSPECTRAL FOURIER METHOD

In order‘to set the framework for this review, let us begiq by explaining
how to construct pseudospectral approximations. There are basically two steps
to obtain a numerical approximation  uy(x) to a solution  u(x) of a
differential equation. V-First; an appropriate finite or discrete
reéresentation of the solutién must be chosen. This may take the form of an

interpolating function between the values u(xj) at some suitable points X

]
or series coefficients in the finite repreéentatidn
. N
u (x) = ) ¢, (x)
N oo e P |
with given expansion functions ¢k(x). The second step- is to obtain

equations for the discrete values uN(xj) or the coeficients a, from the

original equation. 1In the case of a differential equation, this second step




involves finding an approximation for the differential operator in terms of
the grid point values of wuy or, equivalently, the expansion coefficients.

In pseudospectral Fourier approximation, the problem involves periodic
boundary conditions. Thus, all functions appearing in the problem are
periodic. Let £(x) be a smoothly differentiable function with period 2m.
First, we approximate £(x) by the trigonometric polynomial Pyf(x) that

interpolates it at one of the following sets of points

X, =1l (j = 0,e00,2N-1) (1.1a)
N

y; = sz-lL (j = 0,e00,2N) (1.1b)

2 = i%%lﬂ- (3 = 0,000,281 . (1.1¢)

As will be explained below, fast Fourier transforms (FFT) play a key role in

many applications of spectral methods. Many FFT programs are most efficient

when 2P points are transformed, which is not compatible with (1.1b). 1In

practice, the points (1.1a) are most frequently used. This case is discussed

first.
When the collocation points X3 given by (l.la) are used, the
approximation Py f(x) has the form
ZN-1
P, f(x) = ] f(x.)g.(x) (1.2)

where gj(xk) = ij and gj(x) is a polynomial in the functions sin x,

cos x of degree at most N. The polynomials gj(x) are'given explicitly by

w



X X.

— 1.
2

g;(x) = =5y

sin[N(x—xj)]cot

The fact that gj(x) is a trigonometric polynomial of degree N
from the equivalent representation
B N, 1£(x—xj)
gj(x) = -z—ﬁ z - e
2=-N %
where c, = I(le # N), ey = ¢y~ 2. Thus we can represent Pyf(x)
as
1 2N-1 X - xj
Py f(x) = 3N ’2 f(xj)51n[N(x—xj)]cot —
1=0
using (1.3) or as
zuil ] g ] i8(x-x.)
P, f(x) = f(x.) =% — e
N im0 1 N =iy G
) N 1 igx 1 2N-1 -19,xj
) e N Yy f(x.)e
2=-N 2 =0 4
using (1.4). Defining
1 ZN-E-:I —iﬁxj
a, = f(x,)e
L 2Nc£ 5= 3
(1.6) becomes
N .
PN f = 2 azelzxc
=-N
When applying the pseudospectral Fourier method, either the

interpolatory formula (1.5), or the complex-Fourier representation

(1.8) may be used.

(1.3)

follows

(1.4)

either

(1.5)

(1.6)

(1.7)

(1.8)

explicit

.7 -
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As outlined above, the next step in the pseudospectral method is to seek
equations for an approximate solution wuy to a differential equation whose

exact solution is u. The crucial step here is to obtain values for the

k
d uN(x)
derivatives — % at the collocation points X in terms of the values
. dx
uN(xj). This 1is done pseudospectrally in two formally equivalent, but

computationally distinct, ways.
One way is simply to differentiate (1.5) and to evaluate the resulting

expression at the points x.

]
a« uN(x.) 2N-1 ak g (x.) .
___k_l_ = T ug(x) ——“—kL = (4, u). (1.9)
dx n=0 n dx k J

where Dy is an 2N x 2N matrix with elements

' dk g (x.)
n_J
(p). =
k’ j,n dxk

>,
~and u 1s the column vector

(~2 4
[}
vee

Expiicitly,

j+h

(-1)

cot

3]

(p,). = (1.10)

o N+



1 o yj+tn+l 1 :
2 -1 .2 x, - X 1#n
sin ) n
- .
.= . 1.1
(0,) , (1.11)
_ 2N 6+ 1 j=n
More generally
_ k
p, = (D) (1.12)

which easily follows from (1.3) and the properties of gj(x). Also, since
Dy is a real, antisymmetric matrix we note that Dy is a real, symmetric
métrix while Dyp,; 1is a real, antisymmetric matrix.

Computationally, the evaluation of derivatives wusing (1.9) - (1.12)
involves the multiplication of an 2N-component vector u by an 2N x 2N |
matrix, Dy, which typically requires O(Nz) arithmetic operations, However;
since the matrix product is actually a convolutional sum, it is possible to
use the FFT to evaluate (1.9) - (1.12) in only order N log N operations if
N is a highly composite integer (like 2P or 39). .Nevertheless direct matrix
mulitplication can be quite efficient if N is-npf too large or é highly
parallel computer is used.

Oﬁ the other hand, it is also bossible to evaluafe derivatives using

(1.7) - (1.8). 1Indeed, (1.8) gives

dk - .
Uy X inx, _
” (x,) = (in) a_e , (1.13)
dx J [nf<N

where a, is given by (1.7). 1In this approach, a, is first evaluated by

n

(1.7) and then derivatives at X; are evaluated by (1.13). 1f N is a

highly composite integer, the two discrete Fourier transforms (1.7) and (1.13)




can be efficiently evaluated by the FFT algorithm in O(N log N) operations.
Thus, evaluation of derivatives requires just two FFTs together with the
complex multiplication by (in)¥ in (1.13).

The above discussion concentrated on the use of the points x: given by

]

(1.1a). Now we summarize the results for the sets of points ¥; and z3
given by (1.1b) and (l.lc), respectively. The trigonometric polynomial Qy
£(x) that interpolates the periodic function £(x) at the collocation points

x =y. (j =0,¢°¢,2N) 1is given by

J
2N
f(x) = f(y.)h.(x)
Qq .20 yJ) J(x
)
where
= _1_ ] .1_. - __1___ '
ho(x) = 75 sin[(N + 5) (x yj)] el (1.14)
sin —3
2
The kth derivative of Quf at the point ¥j is
k
d QN f %N dk 2§ _ :
— (y.) = f(y ) — h (y.) = (p,). f(y )
dxk b 0=0 n dxk n-j n=0 k"3,n n
where
k
_ d hn(y.)
(B ), = — .
), dx
In particular
_pydtn
(B 1_(-1) itn
173,n 2 . y. - Y
sin ——-1
2 (1.15)

~
o
~
"
o
’



Moreover, since hj(x) can be represented as

N iﬁ(x—y.)
=_2 ]
b = 5% ._z €
j=-N
we obtain
N . 2N -ify.
Q f(x) = ) ettx fﬁ%T Y fly.e J (1.16)
2=-N =0 3
50
v ifx
Q f(x) = ) a, e (1.17)
2=-N
2N -1Ry.
a, = Y fly.e .
L 2N+1 520 k|
With the points z:. defined in (l.lc) the trigonometric interpolant is

given by (1.5) with Z; replacing Xje Equivalently, (1.7) - (1.8) holds
with this modification.

Some examples to illustrate the application of the pseudospectral Fourier

method follow:

ExamEIe 1:

Consider the linear equation

Lu = uxx-+ f(x)ux + g(x)u = h(x), (1.18)

with 2m-periodic boundary conditions. The pseudospectral Fourier equations

for the approximation wuy based on the points x: in (1.1a) are

]




LNuN(xj) z DZuN(xj) + f(xj)DluN(xj) + g(xj)uN(xj) = h(xj)
(j = 0’...’2N_1) (1019)
The algebraic system (1.19) may be solved either directly by inverting

the 2N x 2N matrix Ly or indirectly by the spectral iteration method

explained in Section 8.3.

Example 2:

Consider the nonlinear hyperbolic equation

) (1.20)

with 2m-periodic boundary conditions. The pseudospectral approximation using

the points x: 1is given explicitly by

]
du 2N . X. - X
N -1 _qyJ*n ] n 2
52—_(xj) I Z (-1) | cot ——— uy (xn). (1.21)
nf-O
n#j

A suitable time marching technique should be used to solve this system of

2N ofdinary differential equations in t (see Section 8.2).-

2. APPROXIMATION THEORY FOR PERIODIC FUNCTIONS

In this section we discuss various results about the quality of the
Fourier approximations described in Section 1. Since we are interested in the
application of the pseudoépectral method to differential equations it is of

interest to determine how good the approximation is, mnot only for the
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solution, but also for its derivatives. The approximation results for the
pseudospectral Fourier method turn out to be very similar to Galerkin
approximations based on Fourier series (often called spectral approximations),
so we review both kinds of results and point out the relation between them
here..

If u 1is a periodic function with p continuous, periodic derivatives,

then u can be expanded in a Fourier series of the form

u(x) = 2 ay e lkX (2.1)

The spectral (Galerkin) approximation to u 1is given by

Pyu = ) a elf¥, (2.2)

==N

which should be contrasted to the pseudospectral (collocation) approximation
(1.7) - (1.8).

. For each q, the following quantities are defined:

|u|§= I & )® (2.3)
2 2

ful” = % |uls . ' : (2.4)
q j=0‘ _J ’

The quantity defined-in (2.3) is the norm of the qth derivative of u, whereas
the norm defined in (2.4) measures the magnitude of u and its first q
derivatives.

In theorem (2.1) we quote the principal approximation theory result for

the spectral (Galerkin) Fourier method (2.2) (see Canuto and Quarteroni




[1982b] and references cited therein):

THEOREM 2.1 For any 0 < q < p, there exists a constant c
independent of N and u such that
fu - Pul <c NP || . (2.5)
N lul,

Theorem 2.1 implies that if u has p derivatives,
lﬁN u (up to qth order) approximate those of wu.

At this stage it 1is 1interesting to compare the spectral
approximation gN u Vdefined by (2.2) to the pseudospectral
approximation PN u given by (1.7) - (1.8). From (1.7)

- 1 2;—1 ) eizxj.
£ 2Nc2 520 j

Substituting for u(xj) from (2.1) into (2.6) gives

2N-1

o -ifx; o A ikx:
a, = Ve, .z e z ay e J

J=0 k=-0c0
1 © , 281 i(k-l)xj
me LR L e :

=00 j=0
Now using the identity
2N-1 i(k-,?,,)xj 0 k-£ # 2nN n integer

e =

j=0 2N k-% = 2nN

we obtain

and the derivatives of

Fourier

Fourier

(2.6)

(2.7)

11
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oo
-~

8% ! Yuaw-ete L %peoan (2.8)
2’ n=-oo n=-—o

n#0

S

Equation (2.8) establishes the relation between Py u and PN u. If u 1is

smooth then a * 0 rapidly as |k| » ®» so the second term on the right side
of (2.8) is small.

The main approximation theory result for Py u(x) 1is very similar to
that for PN u, namely:

THEOREM 2.2: Let p > 1@ then for 0 < q € p, there exists a constant

C independent of N and u such that
hu - P ub_ < cN97P |y (2.9)
N q | |P ’»
(see Canuto and Quarteroni [1982b]).

Unfortunately, the norm defined in (2.4) is not the most natural one for
the pseudospectral method. It is more convenient to measure the approximation

errors in u and its derivatives at the grid points X given by (1.1a).

Equivalently, we would like to get a bound on the discrete norm

-1 .2 . u

2N

2 : 1 3 u N 2

| Hu-p uf]]? = E =~ L [(=5- )(x.)]°. (2.10)
N T =0 2V 520 ekt axt J _

In order to get an estimate for (2.10) we need the following lemma, (Davis and

Rabinowitz [1975T).




LEMMA 2.3 Let f(x) be of the form

281
f(x) = Y £ elkX,
==2N+1
Then
IZZ . ZNil
f(x) dx = — f(x.).
0 2N 320 ]

The proof involves a simple application of (2.7). Lemma (2.3) provides the
necessary connection between (2.10) and (2.3) to establish the following

theorem.

THEOREM 2.4 Let p > 1/2 , then for 0 < q < p, there exists a constant

c independent of N and wu such that
11 - 2 u|1|q<cnq‘P lul - (2.11)

The error estimates given in (2.5) and (2.11) show the power of the
spectral method. The rate of decrease of the error with increasing N only
depends on the smoothness of the function u being approximated. However, it

is misleading to conclude from (2.5) and (2.11) that if u 1is not smooth then

13

the approximation Py u(x) to u(x) is poor. In many applications, one

encounters functions u which are piecewise smooth. To illustrate what

happens for such u, let us consider a function with a single discontinuity in

each period, namely

u(x) =x, (|x| <)
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extended periodically in x. The pseudospectral approximation Py u to u

is given by

N 1kx
PN u = z ak e
k=-N
. GPN u
where a, is given by (1.7). 1In general P is a poor approximation to
du/dx even away from the discontinuity at x = &w. However, 1if the

expansion coefficients a, are damped as in
|k|—k0 4
b, = a, exp[- p (“ETEE_) ] (k] > k,), (2.12)
then, for suitable choice of p and kq»

N ikx
v(x) = Z bk e
=-N

has the property that dv/dx 1is a good approximation to du/3x away from the

points of discontinuities (see Figure 1).

3. STABILITY AND CONVERGENCE OF PSEUDOSPECTRAL FOURIER METHODS

Consider the solution of the time-dependent initial-value problem

[~
1]

= Lu - o (3.1)

with initial condition u(t=0) = uy using the pseudospectral Fourier method.

Here L is a linear differential operator with periodic coefficients. The

du A
pseudospectral approximate uy to u satisfies 3t = LN Uy where
uy(t=0) is the trigonometric interpolant of u; and Ly is a finite-

dimensional approximation to L as explained in Section 1.




The analysis of approximation errors given in Section 2 yields estimates

for the truncation error

(L - LN)U (3-2)

for differential operators L. It was shown that (L-LN)u decreases rapidly
with N at a rate that depends dnly on the smoothness of u and the
coefficients of the various derivatives appearing in L.

In addition to the consistency properties of a numerical method, the

method must be stable to be useful. A scheme is said to be stable if
uuN(c)u < cuuN(o)u (0 < t<T ' (3.3)

for some appropriate norm. Here C may depend on T, but not on N. The
importance of stability derives from the Lax Equivalence Theorem, which
implies that if (3.3) is satisfied and (L—LN)u +0 as N+ o in the same

norm as (3.3), then uy converges to u:
tu-u l > 0 (0K t<T) as N = o, } (3.4)

In other words, stabiiity (3.3) and consistency [(L—LN)u * 0] imply
convergence. |

In this section, we vreview some results- aﬁout the stability and
convergence of the pseudospectral Féurier method fof hyperboiicvand parabolic

problems.

15
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Constant Coefficient Wave Equation

Consider the problem
u,_ = u (0 € x < 2m) -
u(O,t) = u(2m,t) (3.5)
u(x,0) = u, (x)

The pseudospectral Fourier approximation can be written

8uN 2N-1
T (x,) = ¥ (p)) ;U (x.) (3.6)
where the antisymmetric matrix D; is gi?en by (1.10).

The stability of (3.6) can be proven by the energy method. There are two
ways of deriving the desired energy estimate. One method is algebraic in
nature and uses the structure of the matrix ©D; while the other makes use of
the fact that the differential equation is satisfied exactly at the
collocation points Xg. These two techniques aré extensively used in the
theory of spectral methods so we demonstrate them in.detail as applied to
equaﬁions.(B.S) - (3.6). 1In the first case, we multiply (3.6) by wug(x) and
sum on k, (N < k < 2N-1) to get |

2N-1 du 2N-1 2N-1

N -
kZo uN(xk) T (xk) kzo jzo uN(xk)(Dl)k,j uN(xj)

SO




1 d 2N-1 2 1 2N-1 2N-1
5 o Z u(x) = 3 E _2 [(Dl)k,j + (Dl)j,k]uN(xk)uN(xj) =0 (3.7)
=0 k=0 =0 :
since Dy is an antisymmetric matrix. Equation (3.7) implies energy
conservation
2N-1 2 2N-1 9
) uy(x,,t) = y up(x,,0). ' (3.8)
k=0 k=0

Therefore the scheme is stable in the sense of (3.3) in the usual L, norm.
The second method to establish stability is based on the fact that (3.5)

is satisfied at the points X;

3UN auN v
—at = —ax at X = xj =_N. (J = 0’00-’2N-1)_ (3.9)
Therefore,
ZN-]. 3u 2N-1 au
1 N S N
2N jzo UN(xj) at (xj) = 5§ jzo uN(xj) % (xj). (3.10)

The right side of (3.10) is.a trigonometric polynomial of degree 2N-1, so

Lemma 2.3 gives

L2810 Bug , 2 du
w Lowt) o Ot [ e o

and (3.8) holds.

Similar arguments demonstrate stability for the problem

G o= Au ‘ (3.11)

17
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. . . > . .
where A is a diagonalizable m x m matrix and u(x,t) 1is a vector with
m components. Using the stability result (3.8), it is straightforward to

establish an error estimate of the form

1-q
2, 2
Tuft) - uN(t)ﬂo < C(1+N7) Iluollq (3.12)
where the norms are as defined in Section 2.
Variable Coefficient Wave Equation
Consider the problem
u = a(x) u (0 € x < 27m)
t X
u(x,0) = uo(x)' ; (3.13)

u(0,t) = u(2m,t)

with a(x) 2m-periodic. If a(x) >0 for 0 < x < 2n then the argument

given above shows that

2
2N-1 uN(xJ.)=

d 7y 0
dt .4 a(x,)
1=0 J

and the same stanility and convergence results hold.
However, if a(x) changes sign in (O,Zw),qu(x,t) may grow without
"bound as t > w. The following example (Gottlieb, Orszag and Turkel [1981])
illustrates the nature of the instability that may occur. Consider (3.13)

with
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a(x) = a sin x + B cos x + Y. (3.14)

For this problem one may derive two different energy estimates. The first one

is
1 1
o (D1 < e /2(|°‘|+_|B|)HuN(o)n + 20,(e f (al + |8De _ 1), (3.15)
where
2N-1
tu (1% = o ] wx,0)
=0 ]
and :
ZNEI f
o, = (-1)7 u(x.,0).
R = J
The second estimate is
1o (Ja|+]8]t | _
nuN(t)u1 < e nuN(o)nl. (3.16)

Equations (3.15) and (3.16) prove stability; however the constant C in (3.3)
involves exp[lf (|a|+|8]T)] which growé in time.
The trouble here is the behavior of the solution itself. If a =1,

B=yY=0 1in (3.14),:theh
-1, t X\ 7
u(x,t) = uo[z tan (e tanrf)].

For large t, the ekact solution changes rapidly near .x = 0 so large values
of N are required to resolve this sﬁeep gradient. 1In the literature on
numerical methods, fhis kind of behavior is often referred to as "nonlinear
instability" as it often leads to spectacular growth of errors in a nonlinear

problem. The problem here can be quite serious in practice but it is not due
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to lack of stability in the formal sense, but rather to the lack of spatial
resolution. It can be treated either by refining the mesh as the solution
develops smaller scales or by treating the region of rapid change as a

discontinuity (see below).

Wave Equation with Discontinuity

If the initial condition uo(x) has a finite number of discontinuities
in [0,27] ©but is otherwise smooth the pseudospectral method is still
applicable if some smoothing procedure is used, see Majda, McDonough and Osher

[1978] and Mercier [1981]. Typically, one has to modify (1.8) by defining

(3.17)

where P =1, (0 < %] < k)
i lkl-ko 4
e Nk,
P = © , x| > L

depending only

It may be shown that, for any q, there is a constant Cs q
. ?

on u(t), (0 € t < T) such that

ug(t) - uN(t)HS < C, . N (0< t<T). (3.18)

’

Moreover, if the modification (3.17) is applied to the spectral representation

Of UO(X)’




then the rate of convergence of uy to u is arbitrarily fast in any compact
region in which u(x,t) 1is smooth. This shows that the high-order accuracy
of the pseudospectral method holds even for nonsmooth problems (Osher (this

volume)).

Nonlinear Equations

It is possible to find energy estimates for pseudospectral approximations
to nonlinear equations. For example, considér the inviscid Burger’s equation
(1.20) with initial condition u(x,0) = uo(x). The pseudospectral
approximation (1.21) does not conserve energy but this property can be

recovered by rewriting (1.20) as

uu . (3.19)
b'e

The pseudospectral approximation to (3.19) is given by

Buy A 28-1

2 1 ‘
5t W =3 jZo (p,) f uylx.) + T ¥ uN(xk)(Dl)k,j uN(xj)- (3.20)

17k, j 320

Multiplying by uN(xk) and summing on k giVes

2N-1

d 2 _
3t uplx) =0

1
k=0

since Dy is antisymmetric. Thus, stability 1s ensured for this
pseudospectral scheme.
It is interesting to note that the procedure described above to prove

stability may be applied to the Euler equations of gas dynaﬁics. It is known,

21

(see Harten [1983a] and Tadmor [1983]), that the Euler equations can be
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expressed in the form

>

H<z)zt = A(V)V (3.21)

X

> . > >
where v 1is a three-component vector, and H(v) and A(v) are 3 x 3

. . > . . . . .
symmetric matrices. Also, H(v) 1is positive definite and H and A satisfy

u(3)¢t [u(3)¢1t

(3.22)

A(z)tx [A(z)z]x.

(See Harten [1983a] for the explicit formulas for H and A.) Using (3.22)

one rewrite (3.21) as
i3, + w3, = adi o+ ad | (3.23)

For this form of the Euler equations, it follows easily that

1 . . .
It ) v_(xk) H(v(xk))v(xk) =0 : (3.24)
k=0 v . .

which implies stability in the norm induced by H.




Heat Equation

Consider the problem

u o =u (0 < x < 2%)
u(0,t) = u(2nw,t)
u(x,0) = uo(x).
The pseudospectral Fourier approximation is
auN 2N-1
3t (% =L (D)) 5 uylxg)e
=0
Then
2
du 3°u
N— N = =1r—l—( N = LN N ] —
55 - T3 et X = ox N (k = 0, ,2N-1)
ax
so that
, 2
x ZNEI BuN T ZNEI 3 uN(xk)
= u (x ) =— (x,) = < u (x )
N oo MK 3T Tk Ly N 2
2 4
27 9 uy 2r du_ 2
= f u dx = - f (———) dx < 0,
0 N ax2 0 ax

proving the stability of this pseudospectral approximation.

(3.25)

(3.26)
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4, PSEUDOSPECTRAL CHEBYSHEV METHOD

When a function f(x) is not periodic, a trigonometric interpolation
polynomial does not provide a good enough approximation to yield accurate
approximations to the derivatives of f(x). It is better to approximate f(x)
by polynomials in X. However, it 1is well known that the Lagrange
interpolation polynomial based on equally spaced points does not give a
satisfactory approximation to general smooth f. In fact, as the number of
collocation points increase, interpolant polynomials typically diverge. This
poor behavior of polynomial interpolation can be avoided for smoothly
differentiable functions by removing the restriction to equally spaced
collocation points. Good results are obtained by relating the collocation
points to the structure of classical orthogonal polynomials, like Chebyshev or
Legendre polynomials.

In the most common pseudospectral Chebyshev method, the interpolation

points in the interval (-1,1) are chosen to be the extrema
x. = cos & (j = 0,00e,N) (4.1)

of the Nth order Chebyshev polynomials Ty(x). Here the Chebyshev polynomial

of degree n is defined by

1

Tn(X) = cos(n cos * x). (4.2)
It follows that
= mjn
Tn(xj) cos = (4.3)

which indicates a close relation between the pseudospectral Chebyshev and the
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pseudospectral Fourier method. 1In order to construct the interpolant of f(x)

at the point x

(1= T () (-1) 3"

gj(x) = (j = 0,000,N) (4.4)

E.Nz(x—x.)
J ]
with Eb = EN =2,¢c, =1, (1 < j<Nl). It is readily verified that

gj(xk) = ij5
The Nth degree interpolation polynomial, Py f(x), to £(x) is given by

N
P f(x) = ]

N o f(xj) gj(x). , (4.5)

A different way of representing Py f(x) 1is to use the identity

N Tn(ﬁj)T;(x) '(l—xz)T&(x)

- i+l
& - - T2N(x=x.) (-1)
n=0 . c ]
n .
giving
N - . , N f(x.) N T (x.)T (x)
Z f(x.)g.(x) = ﬁ 2 _J z n i n
j=0 3 0 c¢. n=0 c
j n
N N  £(x.)T (x.)
= g z T (x) _1 z i J —n ] .
n= c_ j=0 c.
Thus, n ]
N ’ . ' ’
PN f(x) = Z a Tn(x) - (4.6)
n=0
where
N f(x.)T (x.) .
2 1 .
an = ﬁ - .g' ———J:Tll——l— - (4-7)
c_ 1=0 c.
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It should be noted that the coefficients a

the FFT.

n

In fact, using (4.3) in (4.7) gives

- z — cOS N .
Cc = C.
n ]

o
ZIN

in (4.7) can be evaluated using

(4.8)

The second step in getting a pseudospectral approximation is to express

the derivations of

This can be done by differentiating either (4.5) or (4.6).

obtain

so that

where

For example

and

Py £ in terms of f(x)

aP Py £(x) N 4P
— 8 -7 EHx)
axP j=0 I axP

P kyI 4P T3 IEEX

T, iy itk
( 1)k = k1) (k # 3)
21, Fk T ¥
b
X. 2
(D), . = __"l_i— , (D) = Zﬁ—gi—l
3,3 2(1-xj)

p = (p)P.
p

= - (D.)

at the collocation points x:

NN

]

With (4.5) we

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)




[+

It should be noted from the explicit formula (4.12) that the matrix Dy is
not aﬁtisymmetric; also D, is not symmetric. These facts introduce both
theoretical and practical difficulties in the pseudospectral Chebyshev method.

A different way to obtain an expression for the derivative of Py f is

to differentiate (4.6) to get

where the coefficients a, are given by (4.7). For example,

d PN f N N
T = Z an Tn(x) = Z bn Tn(x) (4.15)
n=0 n=0
where
bN = 0, bN—l = 2N aN
and |

c b =b + 2(n+1)an+ (0 < n< N-2). (4.16)

n n n+2 1-

In evaluating the first derivative at the collocation points X3 the FFT is

used to evaluate a_, by (4.8) and then

n

N

d - mnj
In PN f(xj) HZO bncos N

More generally

aP(p. ) N
) _ v (P
—8 -7 v P

~J
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(0)

where b
n

(1)

=a,0<n<N b
n n

= b, and
n

() _ .(p (p-1)
o P = bois + 2(nslb) L7,
with
(p) _ (p) _ (p-1)
by 0,b 7] = 2Nby . (4.17)
The set of points X; defined in (4.1) is not the only set used with
pseudospectral Chebyshev approximations. For hyperbolic ~ problems, a

convenient alternative set of collocation points is

y. = cos —d (] =0,00e,N). (4.18)

The interpolation polynomial at the points Y3 is of degree N and is given

by

1

o £7
j

Il o~

£(y.)h.(x)
0 J

where

(71)j+1 (1-X)(1+Yj)T’ (x)

N+1
h.(x) = . (4.19)
J c (N+1)2 (X—yj)
Upon differentiation, we obtain
d(Qy ) N .
—— ) = jZO (Dl)kj f(yj) (k = 0,902,N) (4.20)
where
a l1+y,
(D,), . =-—2(D,)

17k, j 1+yk 17k, ]




and D; 1is given by (4.12).
It is clear from (4.4) and (4.19) that, for every function £(x),
(-1 < x<1),

(1 + %) Q f(x) = PN+1[(1+x)f(x)].

Moreover, if Qy f(x) 1is expanded in terms of Chebyshev polynomials,

| o~

Qy f = a_ Tn(x), (4.21)

n=0

there is a simple relation between (Zn} and {an} defined in (4.7) with

N+«N+ 1. In fact,

: a
- _ 113 P |
Q £ = QN(PNH £) Poel £ T Q1 x)TN+1(x) (4.22)
so, recalling the derivation of (4.6) - (4.7),
ooy
3= a +2(-1)™M (1 <n<N. (4.23)
n n N+1

Equation (4.23) shows that FFT techniques can also be used with the set of
points yj.

The other two sets of points that are sometimes used are

(1) = _E_i ;I = ese
zj cos 5 (j = o0, ,N) (4.24)
and _
z€2) = cos m(2j+1) (j = 0,°°°,N).- (4.25)

] 2N+1



30

5. APPROXIMATION THEORY OF THE PSEUDOSPECTRAL CHEBYSHEV METHOD
In order to measure the approximation error between f and Py f

defined in Section 4, we introduce the norms

1 .2
e = [ ) gy (5.1)
o2
q
en? = [nea? + a25e? + eee 257, (5.2)
q 9x axq

These norms are useful since we are interested in applying the pseudospectral
method to the solution of differential equations and hence we need to measure
the error between the derivatives of the solution and those of the

approximation.

The main approximation result is summarized in the following theorem.

THEOREM 5.1 Let f(x) be a function with s continuous derivatives
and let Py f Dbe defined as in Section 4. Then, there is a comstant ¢
independent of f£(x) and N such that N .

2q-s
n_f-pN fuq <CN 11, (0 < q <lps). (5.3)

The difference between (5.3) and (2.8) should be noted. Each derivative on
the left side of (5.3) introduces a new factor of N2 in the error estimate
rather than the factor N appearing in (2.8).

As before, the norms defined in (5.1) and (5.2) should be modified in

order to reflect the errors at the collocation points. To do this, we use the

following two lemmas:




LEMMA 5.2 (see Rivlin [1974]): Let g(x) be a polynomial of degree

2N -1 and let xj = cos wj/N, (3 = 0,°°+,N). Then,

g(x.) 1
l - f _glx) dx, (5.4)

0 Cj -1 1 - x2

where c. = ¢, = 2, Ej =1, (1 € j < N1).

LEMMA 5.3 Let f(x) be a polynomial of degree N then

2

1 2 N f7°(x.) -1 2

f ____f(_x)dx<_;_ 2 _TJ_<2] _.._f_g_)i)_
-1 1 - x2 3=0 cj -1 1 - x2

dx. (5.5)

This lemma is proven using Lemma 5.2 after representing £2(x) as a mixture
of Ty,y(x) plus a polynomial of degree 2N - 1. Using Lemma 5.3 we get the

following error estimate.

' THEOREM 5.4 Let

h(x) = £(x) - P, £(x).

N

Then
- . N atn(x,) 2 racs -
z 3 I () < cw¥aa, (5.6)
2=0 j=0 ox s

where € 1is independent of f and N.

When f(x) is discontinuous at one (or a finite number) of points, we
can still obtain a good approximation for the derivative far away from the

discontinuity. 1In order to do so, we modify the expression for Py £ as in
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N
Py £ = ) a o T (x), (5.7)
n=0
where
p, =1 (n < no)
n-n, 4
pn = exp[-p(N_no) ] (no <{n< N). (5.8)

In Figure 2 we plot the derivative of a step function with and without the

smoothing described in (5.7) - (5.8).

6. STABILITY AND CONVERGENCE OF PSEUDOSPECTRAL CHEBYSHEV METHODS

In this section we review some results concerning the stability and
convergence of the pseudospectral Chebyshev method. The most common way to
prove stability is to ‘use energy estimates similar to those used to
demonstrate the well-posedness of the differential equation. This approach is
not syétematic} one has to guess a suitable norm in which the energy is
bounded. An alternative approach ié to solve explicitly tﬁe equation for the
error and then to verify stability. This approach to the analysis of spectral
methods was introduced by Dubiner in unpuBlished work that is reviewed in the

Appendix.




Results for Parabolic Equations

Consider the equation

Jdu azu
-3—t= a( x) -—3 (IX' < 1) - (6.1a)
ax
u(-1,t) = g(t), u(l,t) = h(t) (6.1b)
u(x,0) = uo(x), a(x) » ag > 0. (6.1¢)
The pseudospectral Chebyshev approximation u(x,t) is an Nth degree-

polynomial in x that satisfies

’ 2
auN 3 uy .
— = alx) (x = x. = cos *3 , 0< ji<N) (6.2)
ax 3 2 ] N
x
uN(—l,t) =Vg(t), uN(l,t) = h(t).

The stability of this method is easily demonstrated by an energy argument. 1In

fact (6.2) gives (with g = h = 0)

N u.(x.,t) 3u N 3°u
Ty N Ny, =17 N
= .yt) = < u (x.) (x.). (6.3)
Nz alxp) 3t i Noimg N 10 5% )
Then, Leﬁma (5.2) implies that
uy (x t) 1 Bzu u, dx
. 2 ey NN (6.4)
2N dt . a(x ) 2 - *
J=0 -1 9x 1 - x2

The right side of (6.4) is non-positive (see Gottlieb and Orszag [1977], p.

82) so that
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2
uy (x ,t) N uN(xj,O)

N
2 (x ) ‘o (6.5)

I o~

1=0

The stability of the scheme (6.2) gives the following error estimate:

Theorem 6.1 (Canuto and Quarteroni [1981]): Let o >1& y 8§ > 0+ 2,
0 < t<T, and suppose that wu(x,t) has s spatial derivatives, then there
is a constant C independent of u and N such that

N
r ¥ 1 u (x.,t) - u(x.,t)l2 < cN2IthTs,
N - N

i=0 ¢ ] J

i
A similar proof may be applied to (6.1) when the boundary conditions are of

Neumann type, i.e., wu,(#l,t) are given. For the Neumann problem we get the

following stability estimate.

THEOREM 6.2: Let uy(x,t) be the pseudospectral Chebyshev
approximation to the solution u of (6.1) (with a(x) = 1) and boundary

conditions wu,(#l,t) = 0. Suppose that uy has a Chebyshev expansion of the

form
N-1
uN(x,t) = 2 v Tk(x) + wN(t)TN(x),
n=0
Then,
d__[fl 1_2(3“N( 2 4 2 2 (6.6)
It x 57 (%t ) X + N wN(t)] < 0. 6.6

Note that the norm used in (6.6) differs from the one used in (6.5).

If a(x) =1 and g(t) = h(t) = 0) then it is possible to gain more

information about the pseudospectral Chebyshev approximation to (6.1) by




explicitly studying the eigenvectors and eigenvalues of the finite-dimensional
pseudospectral approximation. Since uN(x,t) is a polynomial of degree N
in x so is Ey(x,t) defined by

i

= (3 _
Ex(x,0) = (5% 7)oy
Ix

Moreover, since Eyg(x,t) vanishes at the points X3 (which are the roots of

T&), it follows that

Ex,t) = (A(t) + B(t)x) TE(x)
for appropriate functions A(t), B(t). Assume that

uglx,t) = At vyl . (6.7)

Then g(t) = Aext, B(t) = Be At so vN(x) satisfies
BzvN(x.) :
AvN(xj) - ——3———4— = (A + Bx)T&. ’ : (6.8)
: Ix '
Iherefore
() = A 4 (1) + By (x,\) (6.9)
where
by (x,0) = k=zo y kot :i::l Ty (%) (6.10a)
and |
XN(x,.A) = 7 ot 32;{ (x :i“). (6.10b)
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We assume for simplicity that N 1is even and therefore ¢N(x,x) is an odd
function of x and XN(x,A) is an even function of x. For the Dirichlet

problem with homogeneous boundary conditions the eigenvalues A are obtained

by solving
$(152) xy(1,3) = 0. (6.11)
Upon setting u = % , it follows that ¢N is a polynomial of degree g -1
in u while Xy is a polynomial of degree g in yu. It has been shown
(Gottlieb and Lustman [1982)) that the roots of ¢ (1, Ly are real, negative,
; N H

%). Therefore, (6.11) yields N - 1

and distinct as are those of xN(l,
real, negative, and distinct eigenvalues which is the required number of roots

since there are N - 1 1interior points in the scheme.

In conclusion we have now explicitly N - 1 eigenfunctions

¢N (x’)\l)’...’(b.N(x’xN )’XN(X’VI)’.'.’XN(X’_\)N)’ (6.12)
7 7! 2
where Al’...’AE o are the roots of ¢N(1,A) and. vl,-o-,vE are those of
2 2
xN(l,X). o

Consider now the more general case of boundary conditions

)
o

. au(l) +‘Bux(1)

(6.13)

]
o
L]

yu(-1) + 6ux(-1)

There are as yet no stability proofs for the pseudospectral Chebyshev method
for (6.1) with (6.13). The difficulty in finding an energy estimate is that

the norm used for Dirichlet boundary conditions is different from that used




for Neumann boundary conditions. However, it is still possible to find the
eigenvalues and eigenvectors for this problem. As a matter of fact the
eigenvalues are given by the roots n; of the polynomial equation

3y X

[a%(l,n) + 8 51 (l,n)][YxN(l,n) -8 'a'x'lj (1,n]

9x 3¢
+ Laxg(1,m) + 8 52 (1,m][ve (1,m) = § = (1,M] = 0.  (6.14)

It may be shown that the roots ni(i'= l,e0¢,N-1) of (6.14) are real,
negative, and distinct if a and B "are of the same sign-

The results for the eigenvalue analysis indicate that,.for fixed number
of mesh points N, the pseudospectral approximation converges to a steady
state as At + + o ag does the analytic solution to (6.1). The analysis does
not prove convergence of uy to u és N increases. However, .it is
important to know the structure of the eigenvalues and eigenvectors to fully

understand the behavior of the approximation.

Results for Scalar Hyperbolic Problems

Let us start by considering the scalar equation

u = u - (]x] < 1) |
u(x,0) = £(x) ’ -(6.15)
u(l,t) = g(t). |

For this simple equation all the methods described in Section &4 are
applicable. We shall review here the theory for the pseudospectral
approximation based on the points yj; defined in (4.18). The use of other

points will be discussed later.
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Let uy be the pseudospectral Chebyshev approximation to u, then uy

satisfies

du ]

u
N = __§ = I = PR
3T - 3% ‘(x Yj, 3 1, yN)
uN(I,t) = uN(yO,t) = g(t) (6.16)

uN(x,O) = Py f(x).

Then the following inequality holds (Gottlieb [1981])

T w2(-1,8) « X o2(p). (6.17)

2
(1+yj)uN(yj,t) * 38 U 5

[= 9

i
N dt

Im
o~

i=1

which gives the following error estimate:

N
ke
X jgo (1+yj)[u(yj,t) - ug(ysst)

12 < cn?{1*0)-s (6.18)

where ¢ >]ﬁ2 and s > 2(1+0), s is the number of derivatives possessed by

the initial conditions and the constant C is independent of u and N.
LD, @
| _ j i

Unfortunately, there is still no estimate of the form (6.17) and (6.18) for

Similar results hold for the points defined in (4.24).

the set of points X3 defined in (4.1) which is the set most commonly used in

applications.

If the differential equation is of the slightly more general form

u =C(X) Ux (|xl <1)’




where c(x) does not change sign in the domain, the above results still
hold. The case in which <¢(x) changes sign introduces some difficulty. The
following examples illustrate the kinds of problems that may arise. Consider

the two equations

u, = Xu (]x] < 1)
u(x,0) = £(x) (6.19)
u(l,t) = £(e%), u(-1,t) = £(-e%),

whose analytic solution is u(x,t) = f(xe%), and
u, = - oxu (]x] <1
(6.20)
u(x,0) = £f(x),
with solution u = f(xe"f). The péeudospectral Chebyshev approximation to

both problems has been shown to be -stable (Gottlieb [1981]). However, there
is a noticable difference between the behavior of the error for (6.19) and
(6.20). Vror (6.19), there is significant loss of accuracy as t increases.
This is due to the fact that the gradient of the solution grows with time as
et and, therefore, with >£ixed number of grid points, the numerical
approximation can not resolvé.the stéep gra&ients. This phenomenon does not
occurbwhen (6.20) is solved.

When the differential equation being solved is nonlinear, behavior
similar to that encouhtered for (6.19) may occur 1in the numerical
approximation, except now the solution may diverge expiosively in a finite
time rather than having just gradual loss of accuracy in time. Smoothing,
done by cutting high modes, should be applied in these cases to avoid such

"nonlinear instabilities".

39
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Results for Systems of Hyperbolic Equations

Consider the symmetric 2 x 2 system

1 1 u
) bl WY ?
ot (v) ) < 1 1&) ax (V> 620

u(-1) = £(¢), u(l) = g(t)

(u) ¢1(x)) . -
v/ x=0 (d}z(x) ’ .
RIS

] ]
applicable. Therefore, we shall discuss the pseudospectral method for the set

For such a non-diagonal system, the points , are not easily

of collocation points X, = cos E% , (3 = 0,000,N). (similar results hold
for the points yj.) Assume that u and v are known at some time ¢t; and

that we would like to advance to the time level t,. First, we get the value

of u/(x,t;) and v, (x,t;) by the pseudospectral procedure described in

1/ . .
12 and advance in time to ty.

Section 4. Then we multiﬁly by the matrix(lz

This algorithm gives values for u and v at the time t, at each of the

collocation points x:, which we shall denote by uc(xj,tz) and vc(xj,tz)‘

J ?
Then we set
. C - A
u(xj,tz) = u (xj,tz) (j = 1,00e,N-1)
c .
V(xj’tZ) = v (xj’t2) (j = 0,00,N) (6.22)
u(-1,t2) = f(tz), u(-l,tz) = g(tz).
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Itvturns out that the pseudospectral method just described is unstable,
although the differential equation is well posed. .Instead of (6.22), improved
boundary conditions may be shown to lead to a stable scheme. The form of
these conditions is suggested by using characteristic variables which are, in
this exampie,vu + v on the characteristic dx/dt = -3/2 and u - v on the
incoming characteristic should be specified at x = -1 whereas u + v at
x = -1 is carried out on an outgoing characteristic and should be determined
by the time-marching scheme. Similarly u + v should be given at x =1
while u - v at x = -1 should be given by the time-marching scheme. The
procedure described by (6.22) is unstable because it uses the numerical scheme
(at x = -1) to find v rather than u + v, The scheme is stabilizéd by
requiring that u + v at x = -1 and u - v at x =1 have the values
computed by the time-marching scheme from the previous time level, even aftr

imposition of the boundary conditions on wu(zl,t,). Thus (6.22) is replaced

by
u(xj,tz) = uc(xj,tz) (j = 1,e00,N-1)
= ¢ . i1 = oo -—
v(xj,tz) =v (xj,tz) (j =1, ,N-1)
alxg,t,) = £(£), ulxgt) = gle)  (6.23)

c c
u(xo,tz) - v(xo,tz) u (xo,tz) - v (xo,tz)

_ .c c
U(xN,tz) + v(xN,tz) = u _(xN,tZ) + v (xN,tZ)-

In general when a hyperbolic system of equations is solved one should use
the time-marching scheme to determine the boundary values of the outgoing
characteristic variables. This procedure yields stable results. Applications
to multi-dimensional problems are given by Gottlieb, Lustman & Streett, (this

volume).
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Eigenvalues and Eigenvectors for Hyperbolic Equations

As in the case of parabolic equations it is possible to find explicitly
the eigenvectors and the characteristic equations for the Chebyshev
approximations to (6.16). Let uy denote the approximation to the solution
;f (6.16) based on the points X5 and let vy denote the approximations
based on the points yje Then wuy and. vy satisfy exaétly

duy i duy .. (1+x)TN
at ax ZNZ
(6.24)
BvN ) avN = TN+1
ot 9x N2
. - : = Xt o = ut 5
for suitable T, T.: Assuming that uy = e uyns Vy e VN and
substituting into (6.24), one obtains
BAN \ (1+x)Tg
= u, + a
ox N 2N2
- (6.25)
_a__g = N + B _'I_:yj-.l
Ix HoVy NZ ’
for suitable «, B. Therefore
- ] . .
Gy = 3 acker Tk
. k:o dx 2N
(6.26)
~ . ) k+1 T
= -k-1 d N+1
wd = L e g

where X and y are determined by the eigenvalue conditions




L}
o

GN(I)

vy(1) =

|
o
.

All the eigenvalues satisfy Re A <0, Re u < 0.

7. OTHER POLYNOMIAL EXPANSIONS 7 o

Although most of the actual computations with spectral methods involve
expansion with trigonometric function and Chebyshev polynomials, there are
other basis functions that are currently being used. Here we briefly review

some of those methods.

Legendre Polynomials

An attractive alternative to éhebyshev polynomial expansions is Legendre
polyhomial gxpansioﬁs. It suffices to explain how to construct a
pseudospectral Legendre polynomial approximation to a derivative.

Let x, = -1, x_ =1, and let xi,(i = 1,ee¢,N-1) be the ?oots of
qﬁ(x), where qN(x) is the Legendre polynomial of degree N. - Given the
values of any function f(x) at the points X, (j = 0,ees,N), we construct
-thé'interpolatihg polynomials

N

P f= ) f(x.) g.(x), (7.1)
=0 1 1

where 9 _
1 (1-x )qN(x)
ay qN(xj) I xj

gj(x) = -
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with

Therefore

dl g 31 gj(xk) g
— 9P f{ __ = £f(x.) = (p,),. f(x.). (7.2)
ax* N X 52 I ax* j50 M ]
For example
. q.(x )
(Dl)k = N(zk) " f " (k # 3)
I A%y %k
0,). . =La =-(n) (7.3)
1’700 4 N 1°NN
(Dl)kk =0 (k #+ 0, kK # N).

The difference between the Chebyshev and Legendre methods is evident here.
The matrix D; for Legendre polynomials is nearly antisymmetric, in contrast
to the Chebyshev matrix given in (4.12).

By the same method, we obtain

(%) 1

1 <k, j<N-1,

(p,),. = -2 5 K Ej

27k qN(xj)‘(xk - xj)

(D.).. = - N

1 . S
2753 3 1 < j< N-1. (7.4)

1 - x%
]

This shows that D2 =AS A_l, where A is a diagonal matrix and S is
symmetric.

The following result 1indicates that the accuracy - of Legendre

approximation is comparable with the accuracy of Chebyshev approximations:
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THEOREM 7.1: Let f£(x) have o smooth derivatives for |x| <1, and

: g
define ufuz = 3 ] (—_I)z dx. Then there is a constant C independent
2=0

of f(x) and N such that

2
N R a* e £(x.) 2 1p _
P0Y e -—23)] 7 <o an (7.5)
=0 j=0 dx- ? dx ‘

1
for u < 5 O
Stability results are much easier to obtain here than with Chebyshev
approximation. TFor example, consider the pseudospectral Legendre method for

the approximation of

u = u (x| < 1. (7.6)
~u(l,t) =0
From (7.3) it follows that
N N N
1.d 1 2 - 1
= ) e —ui(x ) = ) )] ———— (D)), . u(x)u x)
2 dt'k=0 [qN(xk)]?. Nk k=0 =0 [qN(xk)]Z 1"kj W) N Kk

N N (Dl)kj (Dl)jk

= l_ X + u (x.)u (x ) (7.7
2 k=0 ;=0 [qN(xk)]z [qN(xj)]z NYNE
1 uz(xN)
=—§'G.N 2( )<0
IN XN

showing stability.

A similar proof holds for parabolic equations.
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Jacobi Polynomials

An interesting wuse of a different set of expansion functions was
suggested by Wray & Leonard [1982] for the case of three-dimensional flow in a

. . >,
pipe. The velocity vector u is expanded

Wr,0,x,e) = T a (6) X (%) exp(ikx + i26). (7.8)
k LA ] b ’ .

The vector ;(r) is expressed in terms of qﬁ where

L L 2.2 2 2
q = rl‘l(l—r ) gl | (™),

where gi(y) is the shifted Jacobi polynomial

(0,2)

gﬁ(y) =P (2y-1).

With this choice of basis function, one gets the correct behavior of U as

r + 0. Moreover, since qﬁz) satisfy the orthogonality condition
1
(2) (2) B A
fo Y ey (9 (Ndy = es

one gets simple expressions for the derivatives. For example, one can show

that

2 .
v [qﬁ(r)exp(lle)] = rz[bi qﬁf; + ci qiz) + dﬁ qﬁf;]exp(ile),

for certain constants bz, cz, dz .
n” n’ "n




8. TIME DISCRETIZATION AND ITERATIVE METHODS

8.1 Time Discretization

One of the major difficulties in the application of spectral methods to
flow problems 1is time marching hethods. We may divide flow problems into
three categories. First, we have problems in which we are interested only in
steady state solutions. These problems require a time marching technique
which may be inaccurate, but should converge fast to the steady state
solution.’ Diécussion of these methods will be given in Subsection 8.3. The
secsnd class of problems are those in which the temporal behavior of the
solution occurs on a much slower scale than the spatial one. Here it is
reasonable to use low-order accurate finite difference schemes in order to
advance the solution in time. The problem that one faces here 1is that
spectral methods require severe time-step limitations when an explicit time

marching technique is applied. In addressing this problem, Gottlieb and

Turkel [1980] suggested a second-order in time, wunconditionally stable

scheme. This scheme seems to perform satisfactorily for Fourier methods but
their success in the case of Chebyshev methods is still questionable. For
parabolic problems the modification of the DuFort-Frankel scheme was suggested
by Gottlieb and Gustafsson [1976}, Gottlieb and Lustman [1981], aﬁd ﬁas been

later investigated by Funaro [1983a].

" The third class of flow problems involves phenomena in which the temporal.

and sﬁatial evolution occur on the same scale. It is still possible to use
finite differencing techniques for time marching but the time—step must‘be
small. Another alternative is to use spectral discretization in time; however
this approach wusually 1leads to a very large and compiicated set of
equations. Morchoisné [1979] suggested to simplify the-setAof equations thus
>obtained by using the idea of approximate factorization. Several other

methods- are discussed by Deville, et al. [1981].
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8.2. Time-stepping Methods for Incompressible Flow Problems

Here, we survey time-stepping methods and boundary condition procedures
for incompressible Navier-Stokes equations which are incompletely parabolic

and time singular. The equations are

|2
+
<
]

- VWV v V23 + (% ¢ D), (8.1)

¥ev =0 (x € D), (8.2)

where z(;,t) is the velocity field at ;,t, p(;,t) is the pressure, v is
the kinematic viscosity and ?(;,t) is an external force. The (constant)
density is assumed to be 1. If the boundaries of the region D 1in which the
flow satisfying (8.1) - (8.2) occurs are stationary, then for v > 0, the

appropriate boundary conditions are the no-slip conditions
Ix,t) =0 (x € 3D). (8.3)

The pressure in (8.1) may be considered a Lagrange multiplier that
ensures satisfaction of the (kinematical)  incompressibility constraint (8.2)
everywhere in D. The. most obvious way to obtain an equation for p 1is to

take the divergence of (8.1) and apply (8.2), which gives the Poisson equation
2 3 +$+ : > : A

Vip = - e (veV)v + v .t (x € D). (8.4)

A warning of possible trouble in the numerical solution is given when boundary

conditions for (8.4) are sought (Orszag and Israeli [1974]). Applying (8.3)

to (8.1) gives




= w2+ 1 (x € 3D), (8.5)

so both Dirichlet and Neumann conditions for p are available if v is
known. In numerical integrations of (8.1) - (8.3), it is not obvious which of
these boundary conditions to use.

The ambiguity regarding boundary conditions on p can be avoided if the
pressure is eliminated from (8.1) - (8.3). Applying the operator
¥x(Vx...) to (8.1) gives, using (8.2),

202 = Tx(Wx(3e DY) + v - Tx¥xD) (xeD. (8.6)

For flow in a plane channel, implicit time-stepping of the linear terms in
(8.6) gives a fourth-order equation for the component v  of v in the
direction n of the normal to the channel walls. The boundary conditions on
vV, are v = avnlan = 0. Once v, 1is known, the other components of v
are obtained using incompressibility and the equation for the component of
vorticity in the direction a. The numerical implementation of this scheme
is discussed in Appendix II of Orszag and Patera [1983].

A one-dimensional linear model that embodies thé essential features of
the incémpressibility and viscous terms of the Navier-Stokes equations 1is
obtained by considering a solution to the two-dimensional Stokes equations of
the forﬁ

v = (u(y,t)eikx, v(y,t)eikx), p = p(y,t)eikx
for some real wavenumber k. Further details of the following analyses are

given by Orszag, Israeli and Deville [1983]. The equations satisfied by

(u,v,p) are
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du _ . _ 2

3E ikp + v(uyy k™ u)

v _ _ 2 -2

Y 3y + v(vyy kS v) (8.7)
. av

1ku+-a—y=0,

for -1 € y < 1. The boundary conditions are

u(zl,t) = v(zl,t) = 0, (8.8)

which simulate rigid no-slip boundary conditions. In general three-
dimensional geometries, the equations are coupled and are not easily solved.
The solution to an initial-value problem for (8.7) - (8.8) can be expressed in

terms of normal modes, for which

(u,v,p) (y,t) = e%t(q,v,p) (y), (8.9)
with symmetric modes

v(y) = cos § cosh ky - cosh k cos uy (8.10)
or antisymmetric modes

G(y) = sin u sinh ky = sinh k sin Uy (8.11)A
Here

—_ P 1

W= (-2 ) (8.12)

satisfies the eigenvalue relations




k tanh k

[}

|
=
T
0
=}
=

(8.13)

for (8.10) and

k coth k

"
=3
0
o]
cr
=

(8.14)

for (8.11). These eigenmodes are complete on the interval lyl] < 1.
Here we outline several schemes for the solution of (8.7), (8.8) in which
time t is discretized by differences but space X is discretized

spectrally.

Scheme I: Full Implicit Time Differencing

The system (8.7) - (8.8) 1is approximated by backwards Euler time
differencing:
n+} n
u u- ikpn+1 + v(DZ - kZ)un+1
At
n+l n
YoV L™y w? - k)™ (8.15)
At
ika™! o+ pv™! = o,

where the superscript index n indicates time level nAt and D 1indicates a

spectral -y derivative. It follows that

2y Ml 2 )2 o C ik (8.16)

1 ,.2
e (P k
with o™l = py™l = o a¢ y = #l. It may be shown that this scheme is
stable and spectrally accurate in y and first order in At. Methods .to
solve (8.16) for the épectral representation of u™1l are given in-Orszag,
Israeli and Deville [1983]. Higher order results in At are easily obtained

by using higher order time differencing methods.
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Scheme II: Implicit Time Splitting

Here the time-differencing scheme involves two split (or fractional)
time-steps (Orszag and Kells [1980]). The first steps involves solution of

the inviscid equations

*

T S
At P

* n

v - v _ *
1T = Dp (8.17)

* *
iku + Dv =0
for |y| € 1 with boundary condition
*
u =0 (y = z1).

The second step involves the solution of the viscous equations

n+l *
u -u  _ 2 2, ntl
T—-\)(D —k)u_
n+l *
v - v v(Dz _ kz)vn+1'

for |y| € 1 with boundary conditions

u = v = 0 (y = z1).

n

T and v do not satisfy the incompressibility constraint

In this scheme, u

(8.2), although the intermediate variables «* and V' do. In comparison

with Scheme I, Scheme II has the advantage of only involving the solution of




second-order Helmholtz (or Poiéson) equations. In general geometries, it
offers significant simplifications compared to unsplit schemes. However,
Scheme II suffers from large time-stepping errors if vAt 1is large; these can
only be removed at considerable computational expense by extrapolation (see
Orszag, Israeli and Deville [1983]).

It is by no means obvious that Scheme II has solutions consistent (and
convergent) to the solutions of the Stokes equations. For example, it follows

from (8.17) and the boundary conditions that

but (8.7) gives

Dp = VD u (y 1),

which is, in general, not vanishing. It seems that there is an 0(1) error

in Dp as At » 0 at  y = £l. VNevertheless, Orszag, Israeli and Deville
[1983] shows that, away from the boundaries y = %1, the global error
estimates
u"(y) - uly,nat) ~u (y)ae + o(ae®/?). (8.19)
vi(y) - v(y,nAt) ~ vl(y)At + 0(At3/2) (8.20)
P(y) - p(y,nat) ~ p (y)At + 40(At3/2), (8.21)

hold for fixed y with |y| .< 1 as At > 0, where u »Vv,,p; are finite
functions of y. Near the boundaries y = zl, the error estimates (8.19),

(8.20) hold together with
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Du(y) - Du(y,nAt) = 0(At 1/2)

02 u™y) - D% uly,nAt) = 0(1)
02 v* - p? v(y,nAt) = ocat )
p™(y) - p(y,nAt) = O(Atlb)

1
for |y| - 1 = o((vAt) A ), while the error in Dp 1is, as noted above, 0(1)

is this region.

Scheme III: Boundary-Divergence-Free Implicit Time Splitting

Marcus, Orszag and Patera [1982] and Marcus [1983] use a modification of
Scheme 11 that removes much of the boundary errors analyzed above. The idea
is that splitting error induces large boundary errors because a large
divergence of (u,v) develops near the boundaries |y| = 1 on the viscous
step. The modified method is based on the observation thét the normal flow
boundary condition v = 0 is applied twice -each time-step in Scheme II so

that by relaxing these conditions on v it may be possible to reduce the

error in the boundary divergence. The modified scheme is given by dropping
v¥ =0 at 'y =14l in favor of the condition

.. n+l n+1

iku +Dv ~ =0 (y = 1), (8.22)

while applying (8.17) and (8.18). Thus, normal flow is allowed at the
boundary during the inviscid pressure step in order to ensure that (8.22)

holds. Analysis of this modified scheme shows that it is uniformly first




order in At as a function of y, while higher-order time differencing
methods (e.g., Crank-Nicolson differencing) leads to correspondingly higher-
order results. However, in more than two space dimensions, large matrix

inversions are required by this method.

8.3. Iterative Methods

The system of algebraic equations which results from a pseudospectral
approximation to elliptic problems or evolution problems (with implicit time

discretization) may be written as

L(u) = £ (8.23)

where L 1is an operator, possibly nonlinear, f 1is a known vector, and u 1is
the approximate solution. As shown in Sections 2 and 4, even in the linear
case the matrices which represent the operator are full and are difficult to
invert directly. Various basic iterative schemes which are available to solve

(8.23) ~can be discussed within the framework of the defect correction
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procedure. Suppose there is a sparse, efficiently invertible mattix H which

approximates the Jacobian Jy, - of L. Let u® be a guess for a solution "u

of (8.23). Taylor expansion about u" gives

L(u) - f

=
o

L(un) - £+ JL(u - u™ o+ o(lu - un]2)

[}

Lu™) - £+ B - u").

Thus, the simplest defect correction iterative scheme
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1™y = 5™ - (L™ - £],
or

un+1 = " - H-I[L(un) - f]. (8.24)

The various iterative methods differ in the choice of the preconditioning
operator H. For instance, in the case of Jacobi’s method, H is the
diagonal of J;, and for the Gauss-Seidel method, H is the lower triangular
part of J; (Hageman and Young [1981]).

Morchoisne [1979] has applied the pseudospectral method in space and time
to the uns;eady two-dimensional Navier-Stokes equations - in the form of a
fourth order eﬁuation in the stream function. He used for a preconditioning
operator the approximate factorization of the Navier-Stokes operator. More
specifically, the operators L and H were defined as in the usual notation

with A = V2

n 2w 23 oo 8”3 ,on

n
at dy 3x X 9y Ap™ + vAAY,

with =x,y,t; [-1,1] x [-1,1] x [0,T], and H s’_s,/y <, < where -

12? --—lg (1 +¢ é—J

' en ot
2 2
n o ] 3
%-(~1+€u -3;—3\);—_‘2-)(1-“—8—;)
2 2
y=(1+evn—g—-eva—2-)(1-na—2)
y y 3y 3y
and
PR i S
u’ay’v--axo




The nonstationary analogue of the basic iterative scheme (8.24), is the
preconditioned Richardson’s method

un+1 = " - @ H_I[L(un) - f], (8.25)

which has faster convergence. The convergence rate can further be accelerated
by applying polynomial acceleration (Hageman and Young [1981]) to (8.24):

n+l n -1 n n-1
u =w u -o oH 4(L(u ) - £) + (1 - wn)u e

This 1is wusually called a nonstationary second degree iterative scheme and it
includes Chebyshev and conjugate gradient methods (Hageman and Young [1981]).
Orszag [1980] discusses the Richardson, Chebyshev and conjugate gradient
iterative schemes in the linear case, and suggests that the preconditipning
operator = H should be a suitably chosen, low-order finite-difference
approximation Hgp to L. For a differential equation doﬁipated by second

derivative terms, Orszag [1980] shows that
-1
m<HHFDLH<M,

‘with m=1 and M~ 2.5. Unfortunately, HH;% LA is unbounded if L 1is a
first derivative operator and Hpp: 3 central difference approximétion.. In
order to keep NH;; LIl bounded iﬁ this case, it ié-necesséry to have more
‘degrees of freedom (grid points) for Hpp than for 1L, and then to modify
suitably higher frequencies in the spectral approximation. An alfernate

remedy is discussed in Hussaini and Zang (this volume) where a semi-implicit

Fourier=Chebyshev pseudospectral method of solution (involving a finite
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difference preconditioning) is described for solving the wunsteady two-
dimensional incompressible Navier-Stokes equations.

In multi-dimensional problems it may prove expensive to evaluate the
inverse of Hpy. Efficiently invertible approximate versions of Hpp such as
approximate factorizations and incomplete LU decomposition of Hg, are the
obvious choices. As noted earlier Morchoisne [1979] wused approximate
factorization for the Navier-Stokes equations. Zang, et al. [1982] and Wong,
et al. [1983] discuss several types of LU decompositions. Application of
these preconditi&ning operators 1s typically far 1less expensive than the
spectral evaluation of tﬂe residue. Thus, there is a large payoff for
improving the effectiveness of the preconditioning and in using iterative
schemes with better convergence rates.

The minimum residual (MR) method (Wong, et al. [1983]) is a robust
parameter-free scheme. The only requirement for convergence is that all the
‘eigenvalues of ElL  be strictly in the right half of the complex plane.v 1t
can be put in the form of the classical Richardson iterative scheme (8.3)

where
T (", v

n (Lvt,Lv™)

Figure 3 shows the convergence history of MR solutions to this Chebyshev
pseudospectral approximation to the two-dimensional Poisson’s equation with
Di;ichlet boundary conditions (Wong, et al. [1983]). The labels A and B
refer to ‘different LU decompositions; the labe I indicates no

preconditioning,




Spectral multigrid methods are very much in the initial stages of
development. The work of Zang, et al. [1982] and Hussaini and Zang (this
volume) suggests that multigrid procedures which have significantly improved
the rates of convergence for finite difference and finite element methods, may
do equally well in the case of spectral methods. A glimpse of this promise is
seen 1in Table I which compares the con§ergence history of Richardson’s
iteration on a single grid with that of mﬁltigrid with Richardson’s relaxation
for smoothing for Poisson’s equation with periodic boundary conditions.

Further results are reported in Zang, et al. [1983].

Table I. RMS Residual

Relaxation Single Grid Multigrid
3 2.73 (1) 1.82 (7)
6 2.08 (1) 2.42 (-1)
12 ~1.31 (1) 4.56 (-4)
15 1,07 (1) 8.30 (-5)
[

9. INCOMPRESSIBLE FLOWS

9.1 Three~-dimensional Numerical Algorithms

The spectral simulation of viécoqs incompressible (external and internal)
flows up to 1974 were reviewed by Orszag and Israeli [1974]. Wé present here
a detailed description of a spectral algorithm for the solution of the Navier-
Stokes equations (8.4) in the case of three-dimensional plane shear flows.

The physical domain for these flows extends to infinity in the horizontal
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directions and is assumed periodic in those directions; in the vertical
direction, the flow is either confined between two parallel rigid walls

|y| <1 (plane channel flow) or bounded by a wall on the one side and
extends to infinity in the other direction (boundary layer flow). In this
case, it is natural to expand the flow field v = (u,v,w) in Fourier series

in x and 2z, and Chebyshev polynomials in vy.

> > 3 i(kxax+kzsz)
vix,t) = % % Z v(kxkz,k,t)e Tk(y),
e l<N |k, [<N, ®=0
2n _ 2 ’
where aq=5— ,8=7— ,0<x<L,0<z<L and T, (y) denotes the kth
L’ "L 1 2

degree Chebyshev polynomial. The solution techniques of Orszag and Kells
[1980], Moin and Kim [1980] and Kleiser and Schumann (this volume) uses the
Adams—Bashforth.method for time discretization and are essentially similar
except for the different treatment of the incompressibility condition. Orszag
and Kells employ a three-level fractional time-step in which the divergence-
free condition of the flow field is satisfied at the second fractional step.
Moin and Kim solve the continuity equation directly élong with the momentum.
equations. Kleiser and Schumann use an influence matrix technique.
The first fractional step in Orszag and Kells [1980] algorithm is

~

;n.'-l v 3 1 1 1 | -:n+]_ -: -:n 1
TV =2 gt L gt 2 - 23" -
it 5 F 5 F 7 kx aU(y)[v 2v 4+ v ],

where U(y) 1is the mean velocity. This resulte from solving the advection

part rewritten as

by applying the Crank-~Nicolson scheme on the 1left side and Adams-Bashforth




scheme on the right. The nonlinear terms F=(VyxVxv) are computed using
the pseudospectral method. No boundary conditions are applied at this stage.

The second fractional step consists of

+]

+n+l +n “n
v v - At VY

»>n+l

Veuw = 0,

where w is the total pressure. The impermeability conditions

v=0 at y = %l

are imposed at this stage. The third fractional step includes the viscous

effects and the no-slip boundary conditions

<¥

+n+] 2 »n+l
v v

VAt « ¥

zn+1 =0 at y = %l.

In summary, this algorithm consists of a spectral tau method Qith the
nonlinear terms computed by pseudospectral method. It has a global error of
order O(At2 + VAt) in ‘time discretization. The time-steps are formally
restricted only by the convective limit of the perturbed velocity field.

Moin and Kim [1980] use the Crank-Nicolson method on VP and V2 3, and

Adams-Bashforth on the>remainihg terms:
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v2 ;n+1 _ an+l _ % VPn+1 - - gy - %[3Fn _ 30 1] + % e 4 v2 o ﬁ“’
v .yl
2 > > . .
where B8 = AT and F =3 x (Vx73). Fourier transforming the above
equations in x and z gives
)% 2 2.9 %+l 1 anel _ 3%
- al sk VT - VET =R
3y y
(9.1)
ik ~n+l + (§!)n+1 + ik ;n+1 0
dy :
where
ik ™1
X
~n
~n+l _ aP
vP 3y .
. ~n+l
k P
h—l z J

For every pair of wave numbers k, and k, there is a linear system of four

ordinary differential equations for nn+1, vn+1, witl

and P!,  The y-
derivatives in the above system are apﬁroximated by either central differences
or Chebyshev spectral approximations. Both cases yieid a block tridiagonalr
matrix operator which is.inverted by conventional methods.

Although Moin and Kim [1980] discussed an alg)rithm with Chebyshev
polynomials in the vertical direction, all of their published results thﬁs far
have used an alternative algorithm which employs finite differences in the
vertical direction but retains the Fourier spectral representation in the

horizontal direction.
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The algorithm of Kleiser and Schumann [1980] differs from that of Moin
and Kim [1980] in the solution of equations [9.1). 1Instead of using the
block-tridiagonal matrix inversion method, Kleiser and Schumann (this volume)
obtain the solution of this system solving a sequence of one-dimensional

scalar Helmholtz equations of the type

2+ ~ ~ ~
i)—V-—(>‘+k +k2)v=§,3(11)=3.
8y2 2 1

Use of the influence matrix technique (Buzbee, et al. [1971]) yields pressure
boundary conditions which ensure divergence free solution within round-off
errors.

Like Moin and Kim, Wray and Hussaini [1980] also employ central-
difference discretization in the vertical direction. Howéver, they address
boundary layer rather than channel flow. The boundary layer is assumed to be
'parallel', and a key part of their approach is to treat the mean flow as the

solution of the diffusion equation

with the Blasius profile as the initial condition. The numerical method is
only utilized to calculate the perturbations from this profile. = A second
major difference is the use of fourth-order Runge-Kutta time discretization.

They also satisfy the divergence free condition within round-off errors.

9.2 Application to Hydrodynamic Stability Theory
The eigenvalue problems of hydrodynamic stability theory are often very

difficult because they involve the solution of nearly singular boundary value
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problems. For example, the solutions to the Orr-Sommerfeld equation that

described the stability of plane parallel shear flows typically have boundary
~1

layers of thickness (aR) h and an internal layer structure of thickness

()~ 173

, where R is the Reynolds number and a 1is the streamwise
- disturbance wavenumber. In this case, spectral methods based on polynomial
expansions offer the attractive advantage of high boundary resolution. As
discussed by Orszag and Israeli [1974] and Gottlieb and Orszag [1977], only
order 1//8 polynomials are required to resolve a solution with a boundary
layer of thickness §. This property allows the accurate solution of
hydrodynamic stability problems with a minimum of spatial degrees of freedom.
The general stability analysis code SALLY (Srokowski and Orszag [1977]) is a
flexible, accurate code for the analysis of the stability of the boundary
layers on aircraft.

The key ideas involved in the generation of modern spectral codes for
stability analysis are fhe use of collocation (pseudospectral) methods, the
use of matrix algebra for the setué of the matrix equations to be solved,-and
the use qf thé spectral iteration method for the efficient solutidn of these
large matrix equations. The use of matrix algebfa is particularly convenient
when encountering a ne% froblem for the first time. Here, as we described in
Part I, the spectral derivati;e operators are represented by matrices D,
nonconstant coefficient terms are represented = by diagonal matrices, - and
boundary conditions are imposed by replacing suitable rows of the matrix. . The
resultig scheme for generation of the speétral differential operator is both
easy and accurate; it permits the efficient solution of a wide variety of
boundary and eigenvalue problems, especially of the kind encountered in

hydrodynamic stability theory.




Thus, the pseudospectral matrix representation of the Orr-Sommerfeld

equation is simply

n
o

P{(D2 e iR[(al - w(0* - o«® 1) - a T"1]}¢
(1 -P)B$ =0

where ¢ 1is the eigenvector, P 1is the projection operator ontd the interior
collocation points (so» I-P projects onto the boundary), and B is the
operator representing the boundary conditions. The setup of the matrix
operator 1is easily done by algebraic operations applied to the spectral

derivative matrix D.

9.3 Applications to Transition and Turbulence
Spectral methods have proven to be the key element in obtaining basic new
physical insights in the mechanisms of transition to turbulence. Tramnsition

is the process in which a flow first becomes chaotic and random. Because

o

wn

spectral methods are not subject to phase errors, it is possible to use them

to follow in detail the nonlinear interaction of waves tﬁat wouid be
hopeles§1y diffused by more conventional finite-difference methods. Several
studies of transitionvphénomena are noteworthy here.

- Orszag and Kells [1980] studied the transition'tO’thrbulence in plane
channel flows and founi that one could achieve good agreemént with :gross
. experimental features of the flows. In pérticular, they found that tranéition
typically occurs in plane Poiseuille and plane Couette flows at Reynolds
number of the order of 1000, in agreeement with available experimental

observations. Their key conclusion, which confirms the experimental
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observations of Kovasznay, et al. [1962] and Klebanoff, et al. [1962] and
stressed previously by Stuart [1965] and Tani [1969], is the essentially
three-dimensional character of transition. 1In two dimensions, no evidence of
real fluid chaos was found.

Wray and Hussaini [1980] studied the transition to turbulence in boundary
layers and made comparisons’ between their numerical fl&w profiles and
available experimental data. In this work, the basic flow was taken as
parallel, assuming that the spatial instability of fhe laboratory boundary
layer corresponds to the temporal growth of the numerical boundary layer with
periodic boundary conditions. Figure 4 from this work show that the events
which constitute the incipient stages of transition (up to the so-called "two-
spike" stage) are remarkably similar to the cqrrespondiﬁg events observed in
the laboratory. A similar set of comparisons between laboratory and numerical
experiments has been made for plane Poiseuille flow by Kleiser and Schumann
(this volume).

More recently, Orszag and Patera [1981], Pierrehumbert and Widnall
[1982], Herbert [1983] and Brachet and Orszag [1983] have used spectral
methods to isolate a three-dimensional instability that seems to be primarily
responsible for the onset of chaos in shear flows. fhey have  found that the
two-dimensional (or axisymmetric) flow states that result from primary,
classicial, shear layer instability ‘saturate into orderéd finite-amplitude
flow states and that, while these finite-amplitude states are stable to two-
dimensional f¢isturbances, they are strongly unstable to Athree—dimensional
disturbances. It seems that the three-dimensional flows do ﬁot saturate into
ordered states and lead directly to chaos.

Marcus, et al.A[1982] and Marcus [1983] have made an extensive study of

the transition process in circular Couette flow. Marcus [1983] finds that the




onset of wavy Taylor vortex states can be understood in terms of a vortex
pairing process, not unlike thaf encountered in free shear layers and jets.
In this work, the flow between rotating cylinders was studied by a high-
resolution spectrai code using Chebyshev polynomial series in r and Fourier
series in O and z.

There has been a large amouont of research on convecting flows based on
the application of spectral methods. The extensive classification of the
instabilities of Bernard layers by Busse and his collaborators , has in effect
been based on spectral techniques. Busse’s pioneering work has clafified both
the finite—amplitude stability and roles, and their three-dimensional
instabilities. Siggia and Zippelius [1981] have used spectral methods to
study the dynamics of defects. in Benard convection. McLaughlin and Orszag
[1982] used spectral methods to study the onset of chaos in a convecting layer
subject to rigid boundary. conditions in the verticai direction and periodic
boundary conditions in the horizontal. Thgy found substantial agreement with
the Ruelle;Tékens picture of turbulence in which chaos ensues after three
incommensurate frgquencies becomes excited. Curry, et al. [1983] made a
similar study of the onset of chaos in a convecting layer subject to>free—slip
§oundary conditions on all walls. One of their principal conclusions is that,
while two-dimensional convection may be periodic in time, there is as yet no
evidence for chaotic motions of the full fluid equations in two,dimensions; in
contrast to the chaotic motions exhibited by low-order Galerkin (spectral)
approximations to the dynamical equations. Goldhirsch and Orszag [1983] have
studied the onset theory of chaos in a convecting layer bounded by the three-
dimensional rigid walis. In the latter study, three-dimensional Chebyshev

expansions are used to resolve the fluid flow.

O
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There are several aspects of these studies of transition that are
interesting from the ﬁumerical point of view. As mentioned above, Curry, et
al. [1983] and Orszag and Kells [1980} find that inadequately resolved two-
dimensional flows exhibit spurious time dependence, while adequately resolved
two-dimensional flows exhibit much less time dependence than real three-
dimensional flows. Toomre, Goughm and Spiegel [1977] found that, provided an
adequate amount of vertical resolution was used, spectral models of convection
in which a single horizontal mode was retained exhibited no time debendence.
Marcus [1981] has found a similar result in a study of co&vection in spherical
geometry; he also found that the threshold for time dependence increases with
increasing horizontal resolution.

Another important point concerning numerical simulations of transition is
that, in contrast to the turbulence simulations discussed below, transition
simulations typically require only modest- spatial resolution but extremely
‘'high time resolution. It is not uncommon for a transition calculation to
fequire 100,000 or more time-steps, while typical turbulence calculations
requirer at most 1,000 - 10,000 time-steps, even though the latter involve
higher resolution spectral codes. The reason is that tramsition studies often
involve relatively weak interactions between modes that require 1ong—tiﬁe
iﬁtégfations to resolve.

Spectral.mefhods have been used to simulate a variety of turbulent flows.
Perhaps the most distinguishing characteristic of high. Reynolds number
turbulent flows is their large range of excited space and time scales. 1In
homogeneous turbulence, dissipation-scale eddies are of order R times
smaller than energy-containing eddies, where R 1is the Reynolds number. In
ordér to solve the Navier-Stokes equations for such a turbulent flow, it would

be necessary to retain (R3/4) spatial degrees of freedom and to perform




order R3/4 time-steps to calculate for a significant evolution of the flow.
Even if only 0(1) arithmetic operations were required per degree of freedom

per time-step, the total computational work would scale as R3, while the

computer storage requirement would be order ,R9/4. In this case, mere
doubling of R requires an order of magnitude improvement in computer
"capability. In this enviromment, it may in fact be surprising that

significant computations can be performed for turbulent flows; nevertheless,
it has been possible to.use spectral methods to calculate somé key features.
Homogeneous turbulence is simulated by fluid motions within a box with
periodic boundary conditions applied. The periodic boundary conditions allow
Fourier series representation of the field variables. Starting with the work

of Orszag and Patterson [1972], it has been possible to upgrade the spatial

o

resolution of the flows being simulated to the point where it is now possible

to simulate flows ét Reynolds numbers comparable to those achievable in low-
turbulence 1laboratory experiments. Herring, et al. [1974] and Orszag [976]
report simulation of two-dimensional inertial range dynamics, while Brachet,
et al. [1983] report the first, albeit crude, calculation of a three-
dimensional inertial range spectrum. . The work of Brachet, et al. [1983] is
based on a numerical isimulatioﬁr of the Taylor-Green vortéx, which is a
special, highly symmetrical, three-dimensional flow that is a prbﬁotype of
motioné that produce vorticify. With this flow, they were able to achieve an

effective spatial resolution of 256 x 256 x 256 Fourier modes for each of the

velocity components using the CRAY-1A computer. This allowed enoughA

‘resolution to obtain a spectrum close to k3/3 where k 1is the magnitude of
the wave number vector, and to obtain the dissipation-fluctuation corrections

to this spectrum.

0
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For inhomogeneous turbulent shear flows, Orszag and Patera [198la or b?],
report the first direct numerical simulation of a turbulént channel flow at
R = 5000 by wusing a spectral simulation with 64 x 64 x 65 spatial
resolution. This calculation was performed by imposing laminar, finite-
amplitude two- and three-dimensional Orr-Sommerfeld eigenmodes on an initially
laminar velocity profile. They found that, in time evolution, the flow became
turbulent and achieved a state consistent with the structure of wall
turbulence. 'In particular, they found that the von Karman "law of the wall"
velocity profile was achieved, with a von Karman constant «x = 0.46 % 0.05
(which is good agreement with experiment).

If the resolution of the direct simulation of turbulence is inadequate
for the Reynol&s numbers that must be simulated, it 1s possible to use a
subgrid scale turbulence closure, called a large eddy simulation,.following
the'pionéering finite-difference work of Deardorff [1970], [1971], [1972] and
Schumann [1975]. Here, excitations on scales smaller than those resolvable on
the numerical grid are modelled, usuélly by an eddy viscosity coefficient.
Such a sub-grid-scale (SGS) eddy-coefficient represeants the dissipative effect
of motions on scales smaller than the effective grid on the large eddies,
(defined as ﬁhose-métions adequately represented on the numerical grid) . The
most common form for this SCS eddy viscosity coefficientvié due to Smagorinsky
[1963]

5 |,3v; 3v.2 14
v = (ca) (3;7 + =) , (9.2)
]

. eddy Bxi
where A is the grid scale and v is the large-eddy velocity. 1In spectral
simulations, it is possible to use either (9.2) or some more exotic wave-space

filter to remove SGS components. In the absence of walls, either method seems



equally satisfactory. For wall-bounded shear flows, Deardorff calculates only
up to the edge of the buffer layer between the viscous sublayer and the
logarithmic region of the velocity profile. A boundary “condition is imposed
at this point based on the von Karman theory of the wail layer in which the
turbulent fluctuating stress is assumed known. Molecular viscosity plays no
role in Deardorff’s calculations, which are performed at least formally, at
infinite R. Clearly "such a simulation does not give a faithful
representation of tk;e wallcregion' and accompanying bursts.

If one is interested in the physics of wall turbulence, neglect of the
wall region 1is wunjustified. More recent work by Moin and Kim [1982]
integrates up to the rigid wall, the increased sophistication giving a so-
called transport eddy simulation. However, the method (as currently
implemented) has, ih effect, destroyed some of the original incentive of
large-eddy simulation. This point is easily demonstrated. As presently
practiced, ‘tranSport—eddy sub-grid-scale _simulations‘ use uniform horizontal
resblution independent of distanc¢e from the wall (Moin and Kim [1982]). 1If
such a simulatioﬁ is to capture scales down to those of the bursts, the
degrees of freedom required scale as Ri where R, is the wall Reynolds
number based on friction velocity. This estimate is based on the fact that
streakv_ structure scales with the inner variables (Kline, et al. [19.67] and

that streamwise and spanwise correlations scale with outer variables, i.e.,

channel width (Comte-Bellot [1965]). Sub-grid-scale modelling does allow
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slightly higher Reynolds numbers than those that can be achieved without

modelling (Moin and Kim [1982]) achieve Ry = 640 by transport-eddy modelling
while the direct numerical simulations of Orszag and Patera [198la] are
restricted to Ry, = 200),' but bursts at mean Reynolds numbers of 20,000 -

100,000 (in plane Poiseuille flow) are beyond any sub-grid-scale model as now
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implemented. In other words, for a sub-grid-scale, large-eddy simulation to
do significantly better than a direct simulation, the dependence of required
3

degrees of freedom must scale less rapidly than R, as R

, becomes large.

At present, no such method exists.

10. COMPRESSIBLE FLOWS

In récent ‘years,- spectral methods have begun to be applied to the
solution of both steady and time-dependent compressible flow problems.
However, in contrast to the sophisticated applications of spectral methods to
incompressible flow problems, the applications to compressible flow problems
are, to date, less developed.

There are two unique features of compressible flow problems that have
required additional theoretical and practical developments in the spectral
technique. At first glance, the most difficult problem is that inviscid
compressible flows typically develop discontinuous solutioms. It is by no
means clear that these shocked solutions are amenable to numerical solution by
techniques of high formal accuracy like spectral methods. On the one hand, it
has been proven (see Section 3), that, for linear problems, high accuracy can
be maintained within spectral methods far away from a discontinuity; on the
other hand, it may be thought that for ndnlinear problems the overall accuracy
in the presence of discontinuities is limited td first order. However, Lax
[1978] has argued that more information about the solution is contaihed within
high resolution schémes, which may be usefully extracted in obtaining high
resolution results. |

The other major problem with compressible flows is associated with the

boundary conditions that must be applied. For inviscid problems that are




hyperbolic in nature, the analytic solution is driven by the data entering at
inflow boundaries and the numerical technique should minimize the influence of
conditions imposed on outflow boundaries. Because of the high accuracy of
spectral methods and their global nature, correct implementation of boundary

conditions is crucial to obtaining stable and accurate results.

'10.1 One-Dimensional and Quasi-One-Dimensional Flows

Gottlieb, Lusfman and Orszag [1981] considered the solution of one-
dimensional, inviscid, compressible flows with shocks by spectral methods. In
particular they discussed methods capable of capturing a shock wave over one
grid interval. In addition to the conventional shock tube problem, they
treated the problem of a strong shock wave overtaking a weak shock resulting
in a single shock and a rarefaction wave. To demonstrate resolution of this
shock and the contact discontinuity over a single grid interval, the density
plot after shock coalescence is reproduced in Figure 5. Figure 5a shows the
densityvdistribution after the application of the stabilizing low-pass filter
which consists of an exponential cut-off of high frequencies (see Gottlieb,
Lustman and Orszag [1981] for details). Figure 5b displays the density
distributiqn after Aapplying what 1is <called the post-processing filter
(Gottlieb, Lustman and Orééag [1981]) which is simply three-point averaging
~except in the immediate néighborhood of the discontinuity. itself where the
averaging is one-sided.

These simple filters appear to be sufficient to stabilize the solution,
suppress the Gibb’s phenomenon and possibly achieve spectral accuracy for flow
problems consisting of piecewise linear profiles. It remains to be seen if
spectral accuracy can be maintained for more structured flows. It should also

be noted that in this method, although shock waves are not fitted as

~
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discontinuities, the post-processing filters employed do require knowledge of
the shock locations which can be obtained in either physical or spectral
space. Even assuming knowledge of the shock locations, there is a serious
" need for development of spectral filtering techniques to remove with global
oscillations without loss of spectral accuracy.

Zang and Hussaini [1980] present pseudospectral solutions to more
complicated flow problems. Their resul;s show that a highly structured flow
field is well represented along with the sharp front of the shock (see Figure
6). However, the rate of convergence to the inviscid solution is only finite.
Other spectral work on one~dimensional shock problems has been done by Taylor,

et al. [1981]) and Cormnille {1982].

10.2 Two-Dimensional Flows

10.2.1 Euler Equations

Gottlieb, Lustman, and Street (this volume) study simple variants of the
problem of a regular reflection of an oblique shock wave from a solid surface
by solving the Euler equations 1in conservation form. The pseudospectral
technique empioyed is a straight-forward extension of the method developed for
the one-dimensional case (Gottlieb, Lustman and Orszag [1981])._ Thé smoothing
and filtering ﬁgthods which work well 1in the one-dimensional shock tube
problem yield similar results in the two-dimensional shock reflection probléﬁ
if the flow involved is piecewise uﬁiform.

A careful treatment of the boundary conditions is extremely important as
the spectral method is not as forgiving as the finite difference method in
this aspect. Imposition of the boundary conditions in the characteristic form
is found to work satisfactorily as predicted by the linear theory of Section

6. Figure 7 shows the results of calculations described in Salas, et al.




[1982] for the interaction of a Mach 1.3 shock wave with an idealized Karman
vortex street, and it illustrates the sensitivity of spectral methods to
boundary treatment. The only difference between the two calculations is the
treatment of the left subsonic inflow boundary. For the calculations shown in
the top row, all the variables were prescribed. This overspecification of
boundary conditions leads to the eventual contamination of the entire
solution. In the second calculation, only three of the four variables were
specified at the left boundary. The remaining variable, the pressure, was
computed from the interior solution along a linearized characteristic. The
details of method to impose the boundary conditions 1s given in Gottlieb, et
al. (this volume).

It should be emphasized that spectral methods for even slightly complex
discontinuous two-dimensional flows governed by the Euler conditions require
further development. To‘daﬁe the best pseudospectral Euler solutions with
shock capturing have been obtained for one-dimensional and quasi-one-
dimensional flows; as was pointed out in Section 10.1, the post-processing
filter did involye explicitly locating the shock, and even so the accuracy of
the structured, ;mobth regions of the flow was affected. Pending developmént
of improved filpéring techniques, it is expedienf to fit the shock, and thus
to maintain the usual advantages that arise from the application of spectral

methods to smooth problems. .

10.2.2 Shock Fitting

Fitting or tracking a shock in one dimension is simple. It involves a
straight forward application of Rankine-Hugoniot conditions. In two
dimensions, shock fitting 1is more complicated. Usually a coordinate

transformation is employed so that the shock wave becomes a coordinate

~J
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(see Figure 8) be

boundary. To be specific, let X < x < x, - < y<o

the region fo computation bounded on the right by the shock wave

x = xs(y,t)-

Define the coordinate transformation

X - x
= — ’ Y=y,T=t
xs(y,t) X

where (x,y) is the Cartesian coordinate system in the physical space and ¢,

the physical time. With the flow field in front of the shock known, the flow
field immediately behind the shock can be evaluated via the Rankin-Hugoniot

conditions if the shock velocity is known.

Let the shock speed be defined by

~

where x and y are unit vectors in the x- and y-direction respectively.

Then the shock velocity is




Hed

° N.

If the velocity field in front of the shock is

V= ux + vy,

the velocity component relative to the shock in the direction of the normal

~
N 1s

=P

VN
. -
rel Vg

'}

ua + vB - W

and the Mach number relative to the shock is

?

rel
rel a

where a is the sound speed in front of the shock. With the relative Mach
number knoﬁn, the flow variables behind the shock can be evaluated using the
Rankine-Hugoniot relations. Theﬂ the compatibility relation for the
characteristic reaching the shock wave in the x,T plane from the high
pressure side is obtained by combining the eqﬁation'of continuity and the x-
momeﬁtum equation. If the time derivatives appearing in this expression are
replaced by those obtained by differentiating the Rankine~Hugoniot relations

E with respect to T, the equation for shock acceleration ais/ar is found.
The required shock speed is obtained by integrating this equation.

While solving the equations of motion by explicit time discretization,

the shock velocity and position is computed at every step. It should be noted
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that the shock boundary in the computationai domain 1is a supersonic inflow
boundary, and the Rankine-Hugoniot relations provide the boundary conditions
for all of the variables once the unknown shock velocity is computed. The
shock fitting strategy described here has been used with the pseudospectral
method to study the classical blunt body problem, (Hussaini and Zang (this
volume)) and the more complex problem of a shock wave interacting with

turbulences (Zang, Kopriva and Hussaini [1983]).

10.2.3 Potential Equations

It is well known that, even with weak shocks, a good approximation to
transonic flows is obtained using the compressible potential equation. The
most distinguishing and also difficult feature of transonic flows is their
mixed subsonic-supersonic character, which was treated computationally by
Murman and Cole [1971], who introduced type dependent differencing schemes for
steady plane transonic flow.

The extension of type-dependent schemes to use pseudospectral methods
applied to transonic potential flow past a paraBoiic -atc are reported in
Gottlieb, Lustman, and Streett (this volume). Streett [1983] has -obtained
pseudospectral solutions for arbitrary 1lifting airfoils. The airfoil 1is
mapped onto a cylinder using conformal mapping. The full potential equatiéns
in the computational plane are solﬁéd usihg the cylindrical polar coordinate
system with Fourier representation in the aximuthal direction and Chebyshev
polynomial representation in the radial direction. Shocks are captured using
the second order artificial density method as in the finite difference codes.
For supercritical cases, an iterative scheme combining AFl (Douglas—Gunn) and
AF2, (see Holst [1979]), is found to be fairly efficient. For subecritical

flows, four decimal place accuracy in surface pressure and 1lift is obtained




with a grid of 12 x 40 points, and a typical calculation requireé about 45
seconds on CDC CYBER 175. The well known finite difference multigrid code,
FLO-36 (Jameson [1979]) requires about 40 seconds on the same computer on a

32 x192 grid for the same accuracy. The supercritical cases require more
resolution and the iterative scheme suffers from slow convergence.

The multigrid procedure given in Streett, et al. [1983] is found to
accelerate substantially the convergence rate both in the subcritical and
supercritical cases. For example, converged solutions for subcritical flow
conditions are obtained in less than 15 seconds on the CYBER 175, using a grid
of 16 x 32 points. Even more dramatic improvements are obtained in the case
of supercritical flow (Figure 9) where the machine time is reduced by a factor
between 20 and 50 over a single grid iteration scheme.

In summary, the iterative schemes developed for finite difference
discretization can equally be  applied equally  well to ~spectral
discretizations. Since the residual calculation is an order of magnitude more
expensive than the approximate factorization or approximate inverse
calculation, reducing the ﬂumber of iterations reduired, for a given
convergence criterion is the méjof(requifément for. a éood spectral method.

Thé értificial density teéhnique using >finite differences yields
satisfactory results. However, from the standpoint of accuracy, this
technique for capturing shocks requires improvement. The advantage of a
reduced number of points for a given accﬁracy is offséf.by the greater cost
per point of thé spectral method to the extent that the total .cost_ of a
spectral sélution may be of the same order as that for the finite difference
solution. Improvements in itératiQé methods, 1like the multigrid method,
promise to give spectral methods that are more efficient in both storage and

work than the best available finite difference methods.

~J
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10.3 Three-Dimensional Flows

Lambiotte, et al. [1982] have developed a three level time-split
spectral/finite difference method for the numerical solution of the three-
dimensional compressible Navier-Stokes equations. The first fractional step
includes the effect of the advection terms, using a variable-step second-order
Adams-Bashforth method. The pseudospectral method is used for calculating x-
and y-derivatives. The second fractional step is an implicit pressure
correction to avoid numerical instabilifies due to sound waves. In the third
fractional step, viscous corrections are made to the inviscid solution
obtained in‘the previous two steps. Use of the pseudospectral technique for
the evaluation of the compressible viscous terms involve a large amount of
computation. Since viscosity is small at large Reynolds number, it is
reasonable to limit the computational work by discretizing the viscous terms
using central differences. The truncation error is on the order of

2 + Ay2 + Azz) " here v 1is the maximum kinematic viscosity. To

v(At + Ax
avoid severe time-step restrictions resulting from small =z in the stretched
z-mesh, the z—derivgtives are treéted implicitly. This algorithm is being
used to study compressible shear flows at high Reynolds number sﬁcﬁ as the
incipient stages of transition to turbdlence, and receptivity of laminar
boundary layers to external disturbances.

Feiereisen, Reynolds, and Ferziger [1981] have carried out a numerical
simulation of low Reynolds number homogeneous turbulent shear flow using the
thfee-dimensional compressible Navier-Stokes equations. Foliowing Rogallo
[1977], they apply a coordinate transformatién to the Navier-Stokes equations

which permits imposition of periodic boundary conditions. Thus they were able

to use a pseudospectral Fourier method in space.




APPENDIX A

The error bounds presented in Sections 3 and 5 for the pseudospectral
methods were all derived using energy estimates which are global in space.
Consequently, special features of the local behavior of the error may be lost
in this analysis.

In an unpublished paper, Dubiner [1977) gave a detailed asymptotic
analysis, independent of the energy method, of the error in various spectral
methods. His original method 1is reviewed here for the particular example of
the wave equation,

Consider the equation

u, = u x| <1
u(x,0) = f(x) (Al)
u(l,t) = q(t).

Let uy be the polynomial approximation to the solution u of (Al). This

approximation may be obtained either by the pseudospectral, Galerkin or tau

Cheyshev methods. In all .the above cases &N satisfies thé following
equation
du du
N, .y _ °'N
55 (%58) Fr (x,t) + Te(t) qy(x)
uy(x,0) = Py £= £.(x) ' : (A2)

uN(l,t) = g(t),

where qu(x) 1is a polynomial of degree N in x and Ty is a function of t.
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In the case of the pseudospectral Chebyshev method based on the

collocation points x; given in (4.1),

(x) = —N . (A3)

For the pseudospectral method based on the points ¥j given in (4.18)

TI N
a0 = 21, (a4)
. N
while for the Galerkin method
N 1
qN(x) = Zl Tk(x) t3 (AS)
and for the tau method
qN(x) = TN(x) _ (A6)

(Gottlieb and Orszag [1977]). In all cases tN(t) is determined .by fhe
condition that wuy(x,t) be.a polynomial in x of degree at most N. The
quality of the approximation depends on the behavior of the unknown function
tN(t). The basic idea of Dubiner’s method is to find an expression for
fN(t) in terms of qu(x), Pyf(x) and g(t) wusing only the fact that uy is
a polynomial in x.

To do this we Laplace transform equation (A2) with respect to time to get

BuN(x,s) R

s ;N(x,s) - fN(x) = % + TN(S) qN(x) (A7)

GN(l,s) = a(s)




where uy(x,s) is the Laplace transform of uy(x,t). Equation (A7) is an

ordinary differential equation with solution

A

- X X
g(s) + 1(s) | e-S(E-l) qN(E) dg - | e-s(g—l)fN(g)dg}. (A8)
1 1

s(x—l){

uN(x,s) = e

Observe now that the left side of (A8) is a polynomial in x, whereas the
first term on the right side is growing exponentially with increasing x.
Therefore, as x + ® the term in the brackets appearing in the right side of

(A8) must vanish giving

/ e-S(E—l) qN(E)dE = -f e-S(E-l) fN(E)dE + ;(S)- (49)

1. (s)
N 1

Equation (A9) yields the desired expression for the function ;N(s) that
governs the behavior of the error in the spectral épproximation to the wave
equation.

Dubiner proceeds by considering a large class of polynomials qy(x)

-;ather than the particular forms (A3) - (A6). This class is characterizied as

follows.
~ Let

z(x) = x[1 + l;x_z]

and D(Z) ©be an analytic function (except for algebraic singularities at

[}

X +1) that grows less than exponentially fast near infinity. Moreover

assume that

a+ 1/2

(1+2)

lz+1] << 1
p(z) ~ )B+1/2 .

Cp(l-z lz-1] << 1
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Then we consider the class of polynomials satisfying

e -1, - - - -
en” 2z )N N z)z V] [xe] > v 23
(A10)
1 - -

Py aylx) ~ N 2 (—1)N(N/1-x2) @ Ja(N 1—x2) | x+1|<<N 2/3
(A11)

B+1f _2y-B _ 2y _ -2/3

N CP(N 1-x7) JB(N 1-x") | x-1|<<N .
(A12)

This assumption is satisfied by all the orthogonal polynomials with weight

function a(x)

a(x) = (1+00% (1-x) 8 bv(x), (A13)

where b(#)' is a nonnegative polynomial on [—1,1}, and in particular for the
" polynomials given by (A3) - (46). |

For this review we omit now the (very sophisiicated) aéymptotic expansions
tﬂat lead to the error estimétes. In Figuré 10 the error of the

pseudospectral Chebyshev approximation to u. + u, = 0 with data which has

X
£ smooth derivatives is given. Observe the different behavior in different

regions in the x,t ~plane, a behavior that can not be obtained easliy by the

analysis based on energy methods.
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Figure 5. Spectral capturing of shock coalescence without and

with post-processing.
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